Tensar International Corporation

Build Better Roads with Mechanically Stabilized Aggregate Base Value Engineering Contingency Design

Key Geogrid Use Number 1

Unpaved Roads/Subgrade Improvement

Over-excavation with improved fill Geotextile Fabric Chemical Soil Treatment

or

FHWA "The Geosynthetic Design and Construction Guidelines" reference manual (FHWA NHI-07-092)

5.2-1 Temporary Roads and Working Platforms

Where the soils are normally too weak to support the initial construction work, geosynthetics in combination with gravel provide a working platform to allow construction equipment access to sites. This is one of the more important uses of geosynthetics. Even if the finished roadway can be supported by the subgrade, it may be virtually impossible to begin construction of the embankment or roadway. Such sites require stabilization by dewatering, demucking, excavation and replacement with select granular materials, utilization of stabilization aggregate, chemical stabilization, etc. Geosynthetics can often be a costeffective alternate to these expensive foundation treatment procedures.

Evaluating The Subgrade

 Geotechnical testing
 Historical site issues such as pavement rutting, slab cracking, or foundation problems
 Construction site problems
 Proof roll

Typical Proof Roll

The primary purpose of the California Bearing Ratio test is to determine the bearing capacity and the mechanical strength of road sub-bases and subgrades. In this test in the laboratory, the sample is prepared at Proctor's maximum dry density or any other density at which the test is required. A plunger of a standard area is then pushed into the soil at a fixed rate of penetration, and the force required to maintain that rate is measured. The CBR value is then defined as the ratio of the measured force to that required for similar penetration into a standard sample of crushed California limestone rock:

Type of soil	I CBR range	
Clay	1-3	
Sandy clay	4-7	
Well graded sand	15-40	
Well graded sandy gravel	20-60	

Full scale testing of products is required in order to use industry standard design methods such as Giroud-Han

$$h = \frac{0.868 + (0.661 - 1.006J^2) \left(\frac{r}{h}\right)^{1.5} \log N}{\left[1 + 0.204 \left(\frac{3.48CBR_{bc}}{CBR_{sg}} - 1\right)\right]} \left(\frac{\frac{P}{\pi r^2}}{\left(\frac{s}{f_s}\left[1 - 0.9e^{-\left(\frac{r}{h}\right)^2}\right]}\right] N_c f_c CBR_{sg}} - 1\right)r$$

Why Does Geogrid Work – Confinement of the Fill

NY Thruway with Reinforced Subgrade

Which equation can be used to build a mechanically stabilized layer for soft subgrade improvement?

- A) E = MC squared
- B) V=IR
- C) F=MA
- D) The Giroud–Han Method

$$h = \frac{0.868 + (0.661 - 1.006J^2) \left(\frac{r}{h}\right)^{1.5} \log N}{\left[1 + 0.204 \left(\frac{3.48CBR_{bc}^{0.3}}{CBR_{sg}} - 1\right)\right]} \left(\sqrt{\frac{\frac{P}{\pi r^2}}{\frac{s}{f_s} \left[1 - 0.9e^{-\left(\frac{r}{h}\right)^2}\right]} N_c f_c CBR_{sg}} - 1\right)} r$$

To Accurately Predict How a Geosynthetic Will Perform as a Unpaved Road or Subgrade Stabilization:

A) Use only geosynthetics calibrated to an industry accepted design method

- B) Select a product based on its tensile strength
- C) Trust the installer on the job

Key GeoGrid Use Number 2

Pavement Performance Improvement with Confined Aggregate Base

- AASHTO 1993
- Traffic = Structural Number taking into account the type of layers and their thickness, subgrade modulus, and drainage
- ESALs = $S_n(D_f)(M_r)$

Mr – The Subgrade Resilience Modulus

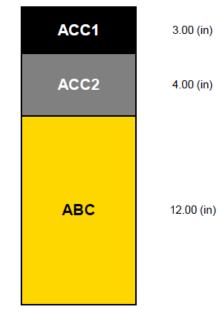
Subgrade Resilient Modulus is a measure of the elastic response of a soil (e.g., how well a soil is able to return to its original shape and size after being stressed) under repeated loading.

2555(CBR) to the .64 power or 1500(CBR)

Sn – The Structural Number

Pavement Sn = sum of layers = $S_{n1} + S_{n2}$ + S_{n3} Or Sn = LC1(T1) + LC2(T2) + LC3(T3)

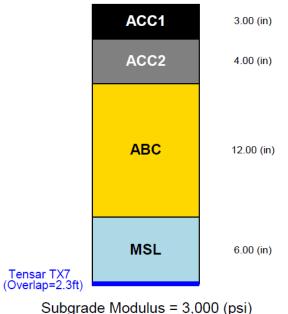
Independent, Validated Full Scale Testing


Design Parameters for AASHTO (1993) Equation

Reliability (%)	= 95	Initial Serviceability	= 4.2
Standard Normal Deviate	= -1.645	Terminal Serviceability	= 2.0
Standard Deviation	= 0.49	Change in Serviceability	= 2.2

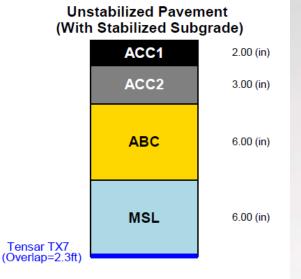
Aggregate fill shall conform to following requirement:

D50 <= 27mm (Base course)


Unstabilized Pavement

Unstabilized Section Material Properties

Layer	Description	Cost (\$/ton)	Layer coefficient	Drainage factor
ACC1	Asphalt Wearing Course	70	0.420	N/A
ACC2	Dense-graded Asphalt Course	70	0.400	N/A
ABC	Aggregate Base Course	20	0.140	1.0


Unstabilized Pavement (With Stabilized Subgrade)

Subgrade Modulus = 3,000 (psi) Structural Number = 4.540 Calculated Traffic (ESALs) = 615,000

Structural Number = 4.540 Calculated Traffic (ESALs) = 16,858,000

Or

Subgrade Modulus = 3,000 (psi) Structural Number = 2.880 Calculated Traffic (ESALs) = 750,000

Higher Performance, Reduced Asphalt Thickness, Reduced Cut Depth

Laydown Yards

Road Reclamation

Grid Installed Over Separator

-

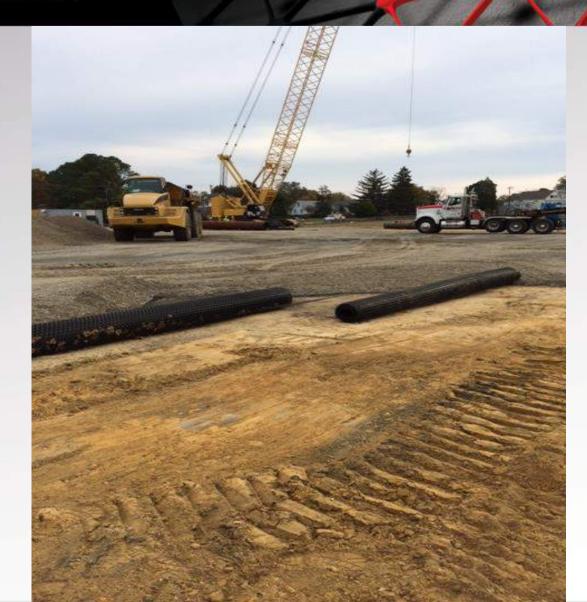
Finished Road

Burlington County Highway Department Church Road Reconstruction Medford Township New Jersey

AND LINE

Change Order #3



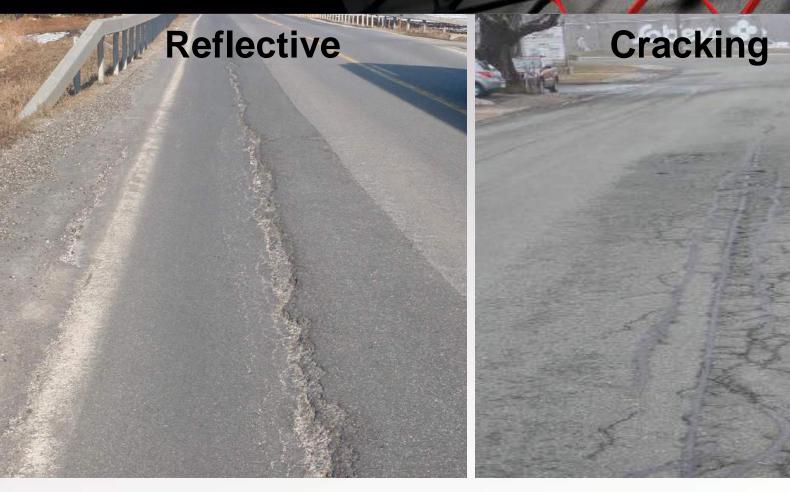


25

WHOSPERIMATE

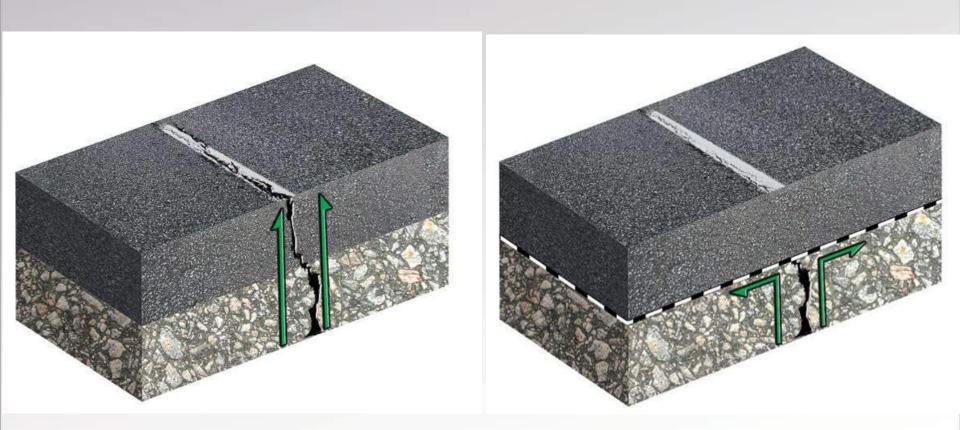
College and the second

A major benefit to improving subgrade soils with geogrid is:


- A. Faster Construction time
- **B. Extruded geogrid can be installed in any soil type**
- C. Geogrid can be installed in wet soil or in rainy conditions
- D. Geogrid provides a major cost reduction when compared to other methods for improving soft subgrade soils
- E. All of the above

Once the Base is Established for the Long Term

Tensar GlasGrid and GlasPave


Thermal and Load Associated

41/50 pages

10/27/2017

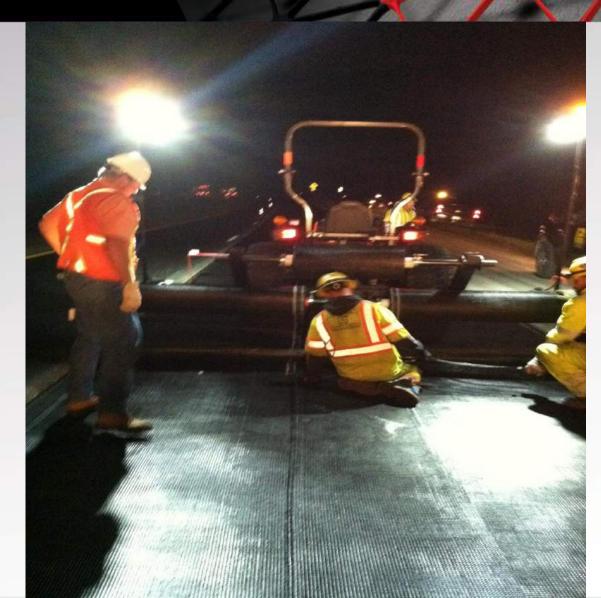
 施

11111111111111

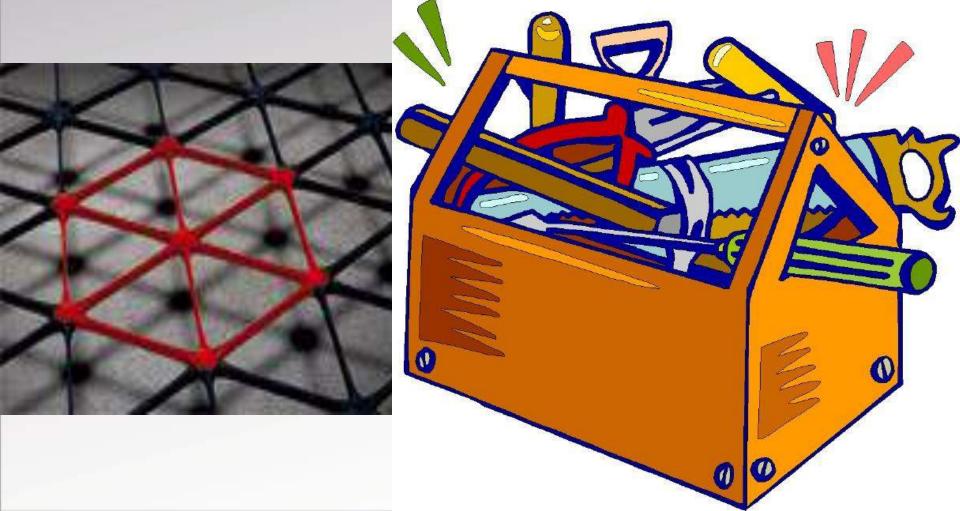
The same

-

14 E.C


.

GlasGrid Installations - Examples



Reinforcement of asphalt overlay can :

A) Extend the service life of the asphalt
B) Correct a soft subgrade problem
C) Prevent water from getting through the asphalt
D) Somtimes reduce the amount of asphalt needed for an effective overlay project
A) A, C, D

Are Tensar Products In Your Toolbox?

