

Stream Buffer Protection for Stormwater Management

Beth Roessler – Stream Buffer Coordinator
Hudson River Estuary Program

Learning Objectives

- What are the benefits of riparian buffers?
- What factors should your consider when you are deciding how much buffer area to protect?
- What state funding sources are available for riparian buffer protection and restoration?
- What are the requirements for using riparian buffers as a stormwater practice for runoff reduction?

Outline

- Definitions
- Benefits of riparian buffers
- Prioritizing buffers for protection
- Promotion and Protection Tools
 - Funding sources
 - Stormwater runoff reduction

Definition – Riparian Area

The interface between land and waterbody

Definition - Riparian Buffer (Stream Buffer)

A vegetated protective area between a waterbody and human activity

Stream Buffer Functions

- Water Quality:
 - Temperature control
 - Pollution reduction
 - In stream pollution processing
- Groundwater recharge
- Flood control
- Erosion control
- Wildlife habitat
- Improved property value
- Recreation and Education

Buffer Protection steps

- Define the goals of protection
 - Local/regional/watershed planning
- Define targets for protected area
 - Area, Vegetation, Allowed Uses
- Find the tool for protection
- Implement Protection
- Monitor and Maintain

Define Targets for Protected Area

- Width / Area
- Vegetation
 - Types (grasses, trees and shrubs)
 - Species (Native, existing)
 - Size (shade, erosion hazard)
- Inputs to allow / avoid
 - Land use, stormwater, floodwaters
- Uses to allow / avoid
 - Public Access / Recreation

Target Widths to protect for:

Target Areas to protect for:

- Stream Erosion
 - Streamway (Meander Belt +)
- Reduced Flooding
 - Floodplain, Wetlands, Headwater streams
- Wildlife
 - Corridors, headwaters, mature forests
- Other Conservation Priorities
 - E.g. Highly erodible areas, Sensitive areas, Corridors

Targets to protect for:

- Surface Runoff
 - High stem density, plants adapted to sediment build up
- Subsurface runoff
 - roots that intercept, high root biomass
- Nitrogen -
 - Best in wet hydric soils
- Phosphorus -
 - Buffer outside of flooded areas
- Stream Erosion
 - woody species with deeper roots, plants that will re-sprout

Buffer Protection and Promotion Tools

Site Scale:

- Grant Funding for Protection and Restoration
- Development Stormwater requirements

Regional/ Municipal Scale:

- Regional and Municipal Planning
 - Watershed planning, Open Space Plan
- Municipal Ordinances
 - Watercourse Protection, Buffer law, Overlay zones, Critical Environmental Areas

State funding for restoration and protection:

- NYS Dept of Agriculture and Markets
 - Ag Nonpoint Source Abatement and Control
- NYS Environmental Facilities Corporation
 - Green Innovation Grant Program
- NYS Dept of Environmental Conservation
 - Water Quality Improvement Project (WQIP)
 - Hudson River Estuary Grants
 - Trees for Tribs

Green Innovation Grant Program (GIGP)

Establishment or Restoration of Floodplains, Riparian Buffers, Streams or Wetlands

- Floodplain restoration and replanting
- Lake-side tree planting
- Wetland construction
- Brownfield to park with wetland and buffer

Water Quality Improvement Program (WQIP)

- Riparian restoration grouped with Streambank Stabilization
 - Score higher points when combined
- Source Water funds for
 - Easement / land acquisition around public surface water source
 - High Priority for buffer directly around the reservoir
 - Protect existing buffer or pay for restoration
 - 4 more years of funding

Hudson River Estuary Grants

- Local Stewardship Planning
 - Watershed planning
 - Conservation planning (NRI, Open Space plans)
 - Green infrastructure projects
- Tributary Restoration and Resiliency
 - Aquatic passage

Trees for Tribs

- Native trees and shrubs
- Plant protection
- Planting recommendations
- Education and planting demonstrations

Applicant provides labor and maintenance

Buffers can help you meet MS4 requirements:

Minimum Control Measures:

- 2 Public Participation
 - Volunteer tree planting
 - Volunteer maintenance

5 - Management of Post Construction Site Runoff

Trees for Tribs in Village of New Paltz

Riparian Buffers in the Stormwater Manual

Chapter 5: Green Infrastructure Practices

5.1: Planning for GI: Preservation of Natural Features and Conservation Design

5.1.2: Preservation of Buffers

5.3: Green Infrastructure Techniques

5.3.1: Conservation of Natural Areas

5.3.2: Sheetflow to Riparian Buffers or filter strips

5.1.2: Preservation Of Buffers

Guidance to Define, Delineate and Preserve Buffers

5.3.1: Conservation of Natural Areas

- Subtract conserved area from contributing area
- Must preserve indefinitely
- Conserved area must be at least 10,000sq ft
- Runoff cannot directed into the buffer

www.co.dutchess.ny.us/EnvironmentLandPres/fittinginto.pdf

5.3.2: Sheetflow to Riparian Buffers

Contributing Site Requirements

- Maximum contribution length:
 - 150ft pervious cover
 - 75ft impervious
- Runoff must be:
 - Sheet Flow (with up to 3% slope)
 - Level Spreader

5.3.2: Sheetflow to Riparian Buffers

Buffer Requirements

- Minimum buffer width:
 - 50ft for <8% slope
 - 75ft for 8 -12% slope
 - 100ft for 12 -15% slope
- Fully Vegetated
 - maintained natural
- No overflow to waterbody

5.3.2: Sheetflow to Riparian Buffers

Where it will work best

- Stable perennial stream on site
- Existing riparian buffer vegetation
- Slope: < 3% in contributing area
 < 8% in buffer
- Soils: Hydrologic group A and B
- Receiving mostly pervious area runoff
- Where local laws already require a buffer!

Riparian Buffers for stormwater reduction

Perceived Limitations:

- Requires a stream on site
- Loss of buildable space
- Risk of failure from stream erosion
- Potential areas for pests
- Requires maintenance
- Inappropriate for higher pollutant loading

Riparian Buffers for stormwater reduction

Benefits:

- Reduce erosion (prevent land loss!)
- Help keep structures out of the floodplain
- Reduce pollutant load
- Protect stream and shoreline habitats
- Inexpensive
- Opportunity for recreational uses

Thank You

Beth Roessler
Stream Buffer Coordinator
Hudson River Estuary Program,
NYS Water Resources Institute at Cornell University
21 South Putt Corners Road
New Paltz, NY 12561

Beth.Roessler@dec.ny.gov (845) 256-2253

Connect with us:

Facebook: www.facebook.com/NYSDEC

Twitter: twitter.com/NYSDEC

Flickr: www.flickr.com/photos/nysdec

