

- Background
- Soil Characteristics
- System Components
- Design

Past

- Large available tracts of land
- Larger margin on development
- Land available for building and infrastructure

Current

- Less buildable land available
- Higher cost of real estate
- Tighter site constraints to fit as much as possible
- Move toward Low Impact Development

1970's

- Stormwater is seen as inevitable part of land development
- Large detention basins at lowest point of site
- Limited to no treatment or retention

2000 to Present

- Increased regulation and government enforcement
- Rate and volume reductions
- Introduction of runoff treatment

1 inch of runoff 2 inches of infiltration **Impervious**

ROW CROP AGRICULTURE 1.6 inches of runoff 1.4 inches of infiltration Impervious surface 38%

> RESIDENTIAL (0.25-ACRE LOTS)

2.5 inches of runoff .5 inch of infiltration Impervious surface 85% URBAN

Image from www.landscapeforlife.org

BUSINESS DISTRICT

System Evolution

- Early systems
 - Stone and Stone with Pipe
 - Large footprint
 - Low to moderate void space
- Newer Systems
 - Arch chamber
 - ► Medium footprint
 - ► Moderate to large void space
 - Box structures
 - ► Best footprint
 - Largest available void space

Applications

- Detention
 - Low to no infiltration rate
 - Lined system
- Infiltration
 - Available infiltration rate
 - ► No liner
- Rainwater Harvesting
 - Climate or site required
 - Lined system

Brooklyn Bridge Park

Engineering Knowledge

- Limited available training
 - System more than place to hide runoff
 - How often do you ask "how is it loaded" and "how is it supported"
- More than just a product
 - Structural element replacing soil
 - Just like foundation of building
 - ► Transfers load
 - ► Relies on sub-grade

Soil Characteristics

- Description
- Loading
- Bearing Capacity
- Compaction

Earth

- Dynamic structure of air, soil and water
- Support structure
 - Distributes loading applied to surface
 - Varies based upon composition

Sub-Surface Storage System

- Manufactured product
- Support structure
 - ► Transfers load
 - Relies on sub-grade for stability

Lateral Loading (Cont.)

- Calculated Load
 - Soil Pressure
 - Surcharge Pressure
 - ► Live Load Pressure
- Results
 - Limiting factor for burial depth
 - Extend wall and building footings to system invert
 - Effects adjacent excavation

Vertical Loading

- Based on AASHTO LRFD for Bridge Design
 - American Association of State Highway and Transportation Officials (AASHTO)
 - Pedestrian loading
 - Vehicular loading
 - H-10 (16,000 lbs. per axle)
 - ► HS-15 (24,000 lbs. per axle)
 - ► HS-20 (32,000 lbs. per axle)
 - ► HS-25 (40,000 lbs. per axle)

Bearing Capacity (Cont.) Distribution of Load - Top Fill Native Soil Stone Backfill Required Bearing Capacity

Compaction

- Soil compaction occurs when soil particles are pressed together, reducing pore space between them
- Increases soil strength
 - The ability of soil to resist being moved by an applied force
 - Limits differential settlement
- Reduces the infiltration rate
- Manufacturer's require between 90% & 95% modified proctor density.

System Components

* PVC or HDPE Liner can be incorporated as required by Engineer of Record

Sub-Surface Storage System Components

- ► Finished Surface
- ► Top Cover
- ► Geotextile Fabric
- Top Backfill

- Side Backfill
- Modules
- Leveling Bed
- Sub-Grade

Sub-Grade

- Material
 - Native soil
 - Compacted to 95% modified proctor density to limit differential settling
- Location where all load is applied
 - Potential for failure if available bearing capacity is exceeded.
 - Can be designed to distribute load to meet native soil properties

Leveling Bed

- Material
 - ► ¾" Angular clean stone typical
 - Thickness per manufacturer/engineer requirements
- Non-structural element
 - Purpose is to provide level surface
 - ► Load is considered to transfer

Modules

- Material
 - ► HDPE flexible, susceptible to creep
 - Polypropylene more rigid than HDPE
 - PVC rigid, resistant to vertical loads
 - Alternate materials
- Load
 - Dead Load
 - Applied Live Load is transferred from top to bottom
 - No distribution of load
 - Load applied to footprint of bottom

Side Backfill

- Material
 - ► ¾" Angular clean stone
 - Width per manufacturer/engineer requirements
- Load
 - Dead Load applied to base only
 - Distributes Lateral Load to side of system

Top Backfill

- Material
 - ► ¾" Angular clean stone
 - ► Thickness per manufacturer/engineer requirements.
- Load
 - Dead Load
 - Continues Live Load distribution
 - ► Varies based on material
 - ▶ Distributes load uniformly to modules

Geotextile Fabric

- Two layers
 - Soil/Stone Interface
 - Stone/Module Interface
- Prevents material migration
 - Movement of particles between interfaces
 - Differential settlement
- Non-structural
 - Applied only as a separator
 - Can be engineered to decrease loading

Top Cover

- Material
 - Compacted fill material (native soil)
 - ► Road base
- **Loads**
 - ► Dead Load
 - Applied Live Load is distributed
 - Varies based on material

Finished Surface

- Material
 - Pervious
 - ► Impervious
- Loads
 - ▶ Dead Loads
 - Live Loads is applied
 - ► Pedestrian Loading
 - ► Vehicular Loading

Design

- Layout
- Investigation
- Calculations
- Specification

Location

- Determine location and elevations of buildings and infrastructures
- Determine ground coverage
 - Impervious
 - Open Space
 - Rain Garden, Swale, etc.
- Locate system
 - Evaluate potential conflicts
 - Evaluate proximity to structures
 - **▶** Building
 - ► Retaining Walls

Geotechnical Investigation

- Soil Borings
 - Evaluate the system invert and investigate additional depth
 - Soil characteristics
 - Limiting zones
 - Bearing capacity
 - ▶ Determines the available capacity of the sub-grade to support the load
- Infiltration Rate
 - Evaluate at invert
 - Secondary testing to verify compacted conditions

System Sizing

- Module Height
 - System invert
 - Minimum required top cover
 - Bearing capacity
 - Void Space
- System Capacity/Footprint
 - Volume
 - Loading Ratio
- Routing
 - Same as above ground
 - Multi-stage orifice

Plan Details

- Cross-section
- Connection and Cleanout Details
- Standard Notes
 - Assembly & Installation Sequence
 - Maintenance

Construction Documents

- CSI Specification
- Site Preparation/Installation Guide
- Maintenance Guidelines

Albany Airport

PVC lined detention 540 - 3' tanks

Watchtower Headquarters Tuxedo, NY

system 1- 2,880 tanks system 2- 2,716 tanks system 3- 1,200 tanks

SUNY CNSE Albany, NY

2 Systems 24,672 ft³ 2,630 - 2' tanks 304 - 3' tanks

Brooklyn Bridge Park Brooklyn, NY

612 - 3' Tanks Detention System

THIS DRAWINGS IS FOR ILLUSTRATION PURPOSES ONLY AND DOES NOT SUPERSEDE ENGINEERING DESIGN OR CALCULATIONS. THIS DRAWINGS REPRESENT THE INTEGRATION OF STORMTANK MODULES INTO A RAINWATER HARVESTING APPLICATION AND SHALL NOT BE CONSTRUED AS PROPER DESIGN, PLEASE REFERENCE ALL LOCAL REGULATIONS AND DESIGN MANUALS DURING THE DESIGN OF THESE APPLICATIONS.

NOTES

- REFERENCE BRENTWOOD INDUSTRIES STANDARD DRAWINGS AND NOTES FOR DETAILED INFORMATION.
- REFERENCE CURRENT INSTALLATION INSTRUCTIONS FOR PROPER INSTALLATION PRACTICES.
- DISTRIBUTION AND PUMP SYSTEM DESIGN AND LOCATION BY OTHERS

Questions:

- Why would you include a geotextile fabric in an underground system?
 prevent material migration B) avoid differential settlement C) both a & b
 - 2. In a typical application, backfill and sidefill materials should be:

 A) ¾" angular clean stone B) sand C) pea stone
 - 3. A majority of subsurface systems are constructed of:
 A) thermoplastics B) concrete C) metal pipe D) A,B & C
- 4. While many systems are constructed from thermoplastic material, installation guidelines require a leveling bed, sidefill and topcover. True or False?

CONTACT INFORMATION:

VARI-TECH, LLC

WWW.VARITECH.COM

1-315-622-1800