

MANAGING STORMWATER IN THE HUDSON VALLEY: A COST-BENEFIT ANALYSIS OF PERMEABLE PAVEMENT

October 15, 2014

Stormwater management is key to maintaining water quality & human health

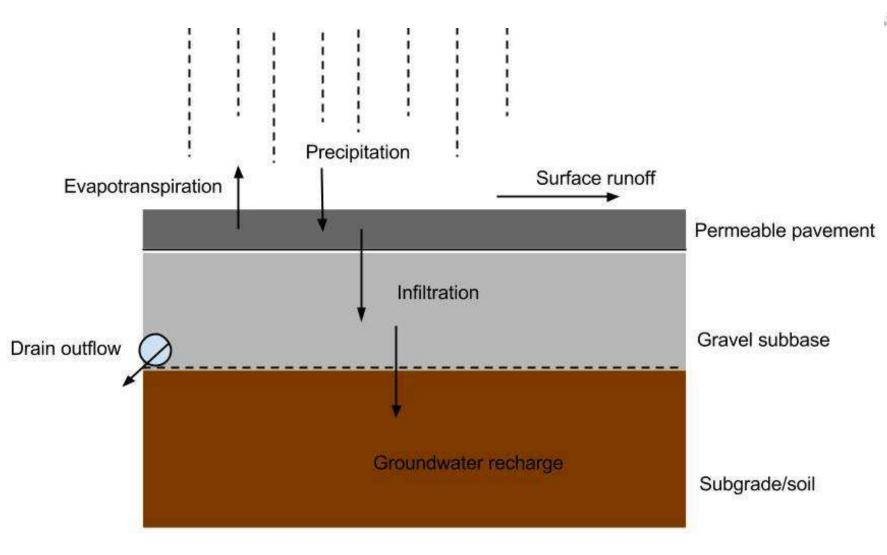
Hudson River estuary

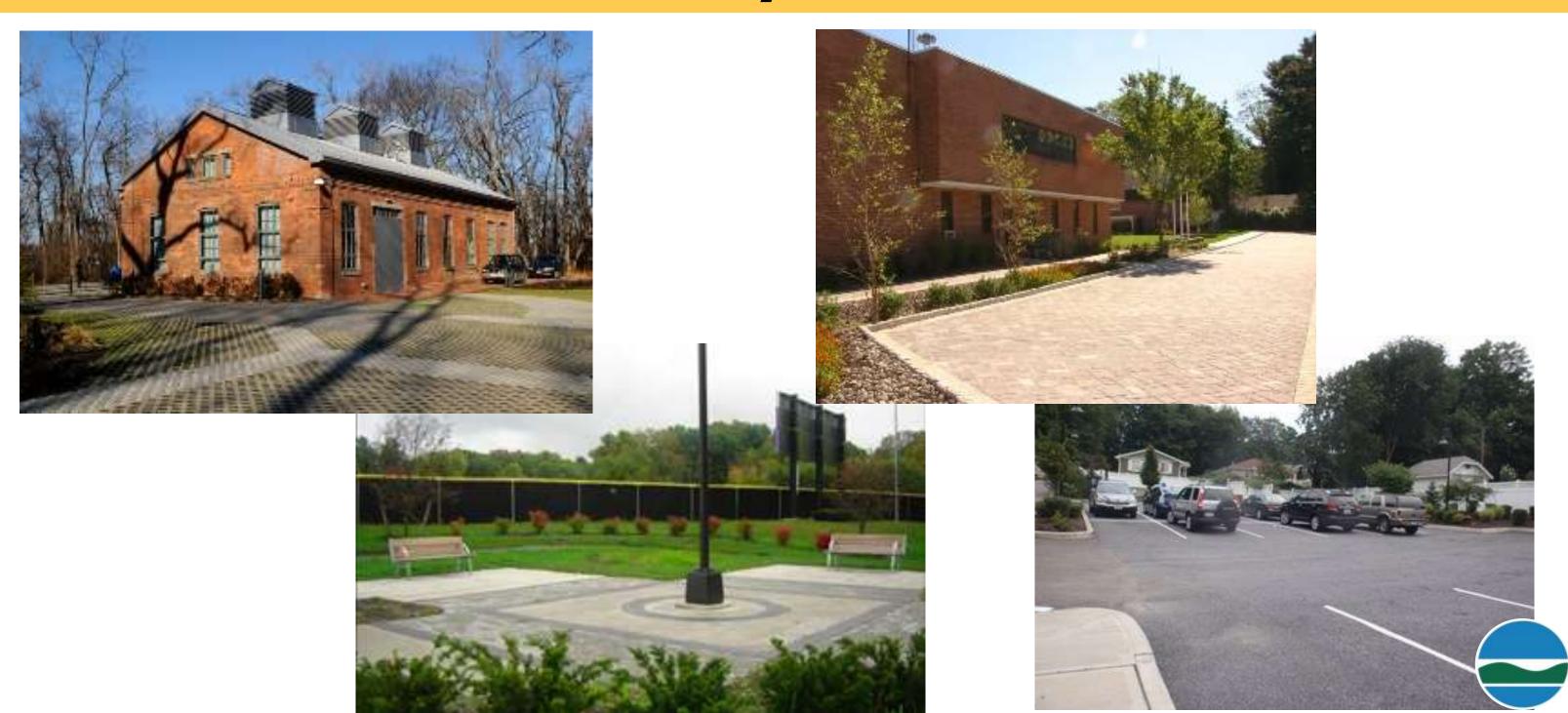
- 150 sewer systems, 13
 Combined Sewer Systems (CSS)
- 695 CSS outfalls
- 29 billion gallons discharge
- Separate systems also lead to discharge

Exacerbated by climate change and urbanization

Stormwater managed historically using gray infrastructure

Emerging stormwater management alternative: green infrastructure





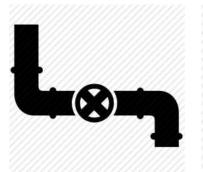
Permeable pavement: An example of green infrastructure

Who is adopting permeable pavement in the Hudson Valley?

What is the lifecycle value of permeable pavement?

I created a robust costbenefit analysis tool to estimate the value of porous pavement for the Hudson Valley

What are the primary costs and benefits of permeable pavement?


Costs

- Installation
- Operating and maintenance

Benefits

- Avoided gray infrastructure
- Reduced runoff
- Pollutant removal
- Reduced deicing

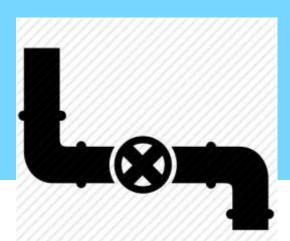
Assumptions

- Project size: one acre or 34,560 square feet
- Type: Pervious asphalt parking lot with 100-150 spaces
- Benefits realized: All (new development, CSS municipality)
- Install cost: \$5 per square foot
- Life expectancy: 30 years
- Discount rate: 3%

Cost #1: Installation

- Upfront investment
- \$0.50 to \$5 per square foot
- Sources: Booth, 1999; Houle et al., 2013; UNHSC, 2012

Installation Costs	
Unit cost (dollars per square feet)	5
Project installation cost (dollars)	217,800



Cost #2: Operating + Maintenance

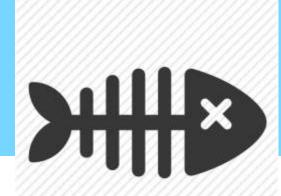
- Annual cost
- Vacuuming and inspection
- ▶ \$1.14 mil per square foot and \$25 per acre
- Sources: Houle et al., 2013; UNHSC, 2012

Operating & Maintenance Cost	'S
Unit vacuuming cost (dollars per square feet)	0.0114
Project vacuuming cost (dollars per year)	497
Vacuuming frequency (times per year)	2
Inspection (dollars per year)	25
Total annual O&M cost (dollars per year)	1,018

Benefit #1: Avoided gray Infrastructure

- Upfront avoided cost
- ▶ \$2.71 per square foot
- ▶ Source: CNT, 2009

Avoided Costs	
Unit cost of stormwater treatment (dollars per square feet)	2.71
Avoided gray infrastructure (dollars)	118,048



Benefit #2: Reduced runoff

- Annual avoided cost
- ▶ \$0.743 mil per square foot
- NRCS rainfall-runoff model, sewage rates
- Sources: CNT, 2010; Battiata et al., 2008; Hunt, 2012;
 USDA NRCS, 2004; Roseen et al., 2012; UNHSC, 2012

Runoff reduction	
Wastewater or sewage treatment fee (dollars per gallon)	0.007429
Average annual precipitation (inches per year)	47.50
Avoided annual runoff volume (gallons)	867,064
Annual runoff benefit (dollars per year)	6,441

Benefit #3: Pollutant removal

- Annual avoided cost
- ▶ \$0.17 for TSS and \$0.035 mil for TP per square foot
- Pollutant concentration reduction method
- Sources: CWP, 2013; Houle et al., 2013; NYSDEC, 2010; Roseen et al., 2012

Pollutant removal	
Drainage area	
Approximate proportion institutional parking lot (%)	100
Annual TSS pollutant removed (milograms)	454,207,418
Annual TP pollutant removed (milograms)	767,952
Pollutant removal benefit (dollars per year)	8,509

Benefit #4: Reduced deicing

- Annual avoided cost
- ▶ \$0.33 mil per square foot
- ▶ 75% reduction recommended
- Sources: DOT, 2013; Houle, 2008; Houle et al.,
 - 2013; Shafer & Kevern, 2013; UNHSC, 2012

Deicing reduction	
Typically road salt application (tons per acre)	3
Unit cost of road salt (dollars per ton)	51
Proportion reduction for permeable (%)	75
Deicing benefit (dollars per year)	115

Results

Financial Analysis		
NPV (dollars)	175,573	
Annual Savings (dollars)	8,958	
Payback Period (years)	8.11	
Return on Investment (%)	14	

Discussion

Financial Analys	sis
NPV (dollars)	175,573
Annual Savings (dollars)	8,958
Payback Period (years)	8.11
Return on Investment (%)	14

- Compare to existing studies
- Model is more robust but there are still weaknesses.
 - Installation costs, repair, gray infra, climate change, etc.
- Permeable pavement could have a significant impact on municipal annual budget
- If NPV really is significantly positive, why are there roadblocks?

Why are more municipalities not adopting permeable pavement?

- Traditional pavement technology well known
- Installation costs are higher for permeable
- Permeable technology requires experienced engineers and installers
- Lenders may be reticent to fund because of uncertainty around lifecycle costs and benefits

Policy recommendations

- Need better education and institutionalization through outreach, funding, and successful demo projects
- Lenders need to decouple risk and funding roles by outsourcing their risk-taking to a third party insurer

Next steps

- Incorporate climate change projections for NYS
- Improve model
- Transform into user-friendly online tool
- Apply to real life projects
- U. Albany campus center

Questions?

Libby Murphy, MBA/MS Elizabeth.murphy@dec.ny.gov

Equations

Installation

where *A* is the area of the project, and *c* is the unit installation cost of permeable pavement.

0&M

where A is the area of the project, c_v is the unit cost of vacuuming, f is the annual vacuuming frequency, and c_i is the annual cost of inspection.

$$C_i = A * c$$

$$C_m = A * (c_v * f) + c_i$$

Equations

Gray infrastructure

Where A is the area of the project and c_g is the avoided cost of gray infrastructure that would have been required per unit of impervious surface.

Runoff reduction

where c_s is the unit cost to treat stormwater and Q_{vol} is the annual runoff volume reduced. Q_{vol} is derived from the NRCS Method, where P is annual precipitation, S_{IP} and S_{PP} are the potential maximum retention after runoff begins for impervious pavement and permeable pavement, and A is the area of the project. S is also part of the NRCS Method, where CN is the Curve Number assigned to each surface given its infiltration properties.

$$B_i = A * c_g$$

$$B_{r} = c_{s} * Q_{vol}$$

$$Q_{vol} = \left(\frac{P^{2}}{P + S_{IP}} - \frac{P^{2}}{P + S_{PP}}\right) * A$$

$$S = \frac{1000}{CN} - 10$$

Equations

Pollutant removal

where P_{in} is the unit pollutant loading based on land use in drainage area, P_{red} is the proportion of pollutant concentration reduction provided by permeable pavement, W is the water volume $B_p = P_{in} * P_{red} * W * c_p$ treated, and c_p is the unit cost to remove pollutant.

Reduced deicing

where A is the area of the project, r is the reduction in road salt application, t is the standard rate of road salt application for impervious pavement, and c_s is the unit cost of road salt.

$$B_s = A * r * t * c_s$$

NPV Equation

$$NPV = PVofBenefits - PVofCosts$$

$$= \left\{ B_i + \frac{B_r + B_p + B_s}{1+i} + \frac{\left(\frac{B_r + B_p + B_s}{(1+i)^2}\right) \left(1 - \frac{1}{(1+i)^t}\right)}{1 - \frac{1}{1+i}} \right\} - \left\{ C_i + \frac{C_m}{1+i} + \frac{\left(\frac{C_m}{(1+i)^2}\right) \left(1 - \frac{1}{(1+i)^t}\right)}{1 - \frac{1}{1+i}} \right\}$$

Where C_i is the initial investment in the form of installation cost of permeable pavement, C_m is the annual cost of operating and maintenance, i is the discount rate, B_i is the initial benefit of avoided gray infrastructure, B_r is the annual benefit of runoff reduction, B_p is the annual benefit of pollutant removal, and B_s is the annual benefit of reduced road salt application.

Data

Table 4. Municipal sewage fee rates for the mid-Hudson Valley area.

_	Municipality	County	Sewage treatment fee (dollars per gallon)
1	Rosendale	Ulster	0.004500
2	New York	New York	0.007607
3	Fishkill	Dutchess	0.012995
4	Kingston	Ulster	0.006007
5	Newburgh	Orange	0.010195
6	Poughkeepsie	Dutchess	0.002674
7	Saugerties	Ulster	0.005357
8	Woodstock	Ulster	0.010100
Simple average sewage fee		0.007429	

Data

Table 5. Annual average precipitation from five sites in the Hudson Valley, NY, 1983-2013.

	Station location	County	Precipitation (inches)
1	Alcove	Albany	52.7
2	Hudson	Columbia	41.6
3	Yorktown Heights	Westchester	54.1
4	Mohonk Lake	Ulster	42.0
5	Walden	Orange	47.1
	Simple average for five sites		47.5

Source: Northeast Climate Center.

Data

Table 6. Representative pollutant loading by landuse type.

Source: Hunt et al., 2012

	TSS (mg/L)	TP (mg/L)	TN (mg/L)
Institutional			
Parking lot	654.81	1.48	5.45
Open/landscaped	100.30	1.67	8.48
Roof	102.20	0.57	4.09
Commercial			
Parking lot	219.53	0.61	5.45
Roof	27	0.15	1.08
Open/landscaped	100.30	1.67	8.48
Residential			
Driveway	654.81	1.48	5.45
Roof	27	0.15	1.08
Lawn	100.30	1.67	8.48
Transportation			
Sidewalks	113.55	1.78	4.31
Low density	113.55	1.63	13.89
Medium density	93	0.52	1.40
Industrial			
Parking lot	173	0.39	1.44
Roof	27	0.15	1.08
Open/landscaped	26.50	0.44	2.24
Other			
Woods	427.71	0.95	5.56
Maintained grass	75.70	2.23	11.58
Pasture	317.94	5.90	13.66
Open water	102.20	0.57	4.09