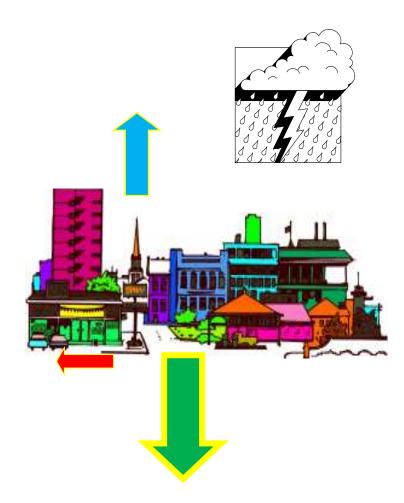
Diving Deeper Into GI Details and Care of GI Practices

2014 Southeast NY Stormwater Conference October 15, 2014 John Dunkle, PE, CPESC, CMS4S

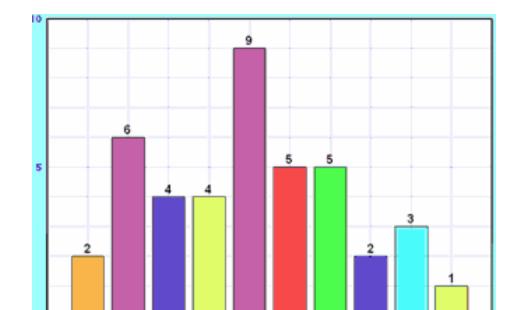
GI Practices

- Green Space
- Riparian Buffers/Grass Filter Strips
- Tree Planting/Preservation
- Rooftop Disconnect
- Porous /Permeable Pavement
- Green Roofs
- Swales
- Bioretention/rain gardens/planters
- Infiltration
- Rain barrels/cisterns



All GI Practices

Provide


Runoff Reduction

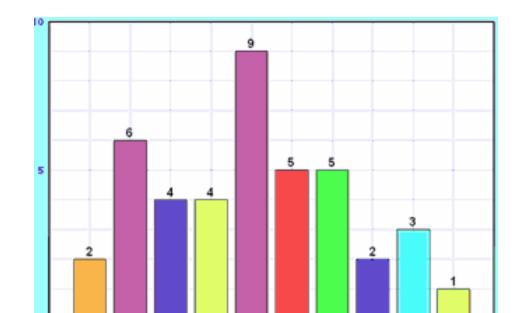
Runoff Reduction Pathways

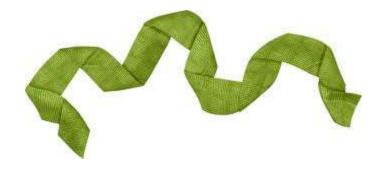
- Evaporation
- Evapotranspiration
- Absorption
- •Infiltration
- Reuse

GI Treatment Practices have variable Runoff Reduction rates.

All GI Practices

Provide


Pollutant Removal


Pollutant Removal Pathways

- Storage
- Evaporation
- Nutrient uptake
- UV treatment
- Settling
- Biology
- Infiltration
- Dilution
 - Soil Stabilization

GI Treatment Practices provide variable pollutant removal.

GI Practices

Provide

Climate Change Resilience

All GI Practices

Need

Storage Volume

Storage – Above Ground

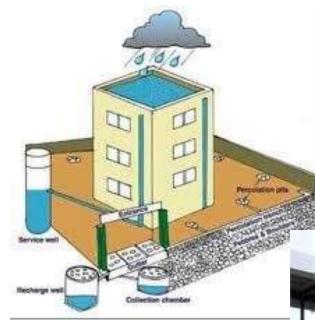
Storage – Underground Pipe Chambers

Storage – Infiltration Chambers

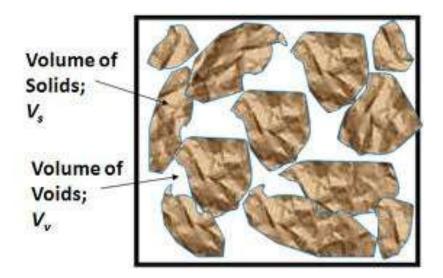


Storage - Tanks

Vaults


Vaults/Tunnels

Blue Roofs/Cisterns



Storage Volume in soils

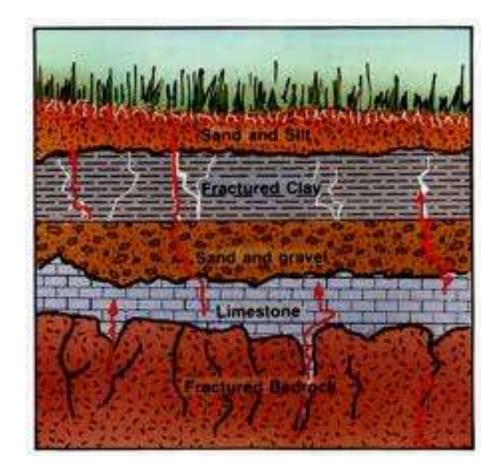
Storage - Soils

Storage – Stone(uniformly graded)

Storage - Structural Soils

Using CU-Structural Soil[™] in the Urban Environment

Urban Horticulture Institute Cornell University Department of Horticulture 134A Plant Science Building Huaca, NY 14853 www.hort.cornell.edu/UHI



26% Voids

Most GI Practices Need Permeability

Got Permeability?

YUP

NOPE.

Be Careful

Infiltration

GI Practices Utilizing Infiltration

- Infiltration Basin
- Infiltration Trench
- Dry Well
- Bio-retention
- Rain garden
- Permeable/porous pavement
- Planter
- Dry Swale
- Vegetated swale
- Tree planting
- Buffers/filter strips
- Green Space

Minimum infiltration rate for infiltration based practices: $\frac{1}{2}$ " per hour

@ 2' below the design bottom

Must be es

Most GI Practices

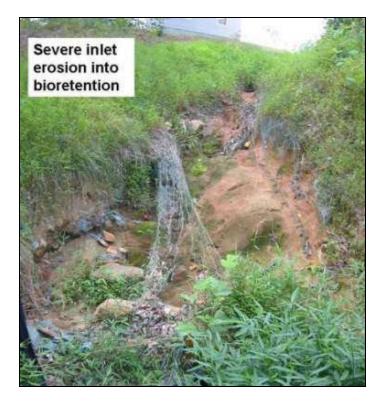
Need

Green

GI Green

All GI Practices Need Care Some Typical GI Stormwater Maintenance Issues:

Excess Sedimentation


Clogging at Inlets & Outlets

Erosion: Inlets, slopes, Practice surface

Vegetation

Little vegetation, no diversity

Too much vegetation, no diversity

Vegetation:

The Wrong Kind

Problems with Pretreatment

- Sedimentation &Loss of Settling Volume/Retention Time
- Contamination

Structural Integrity

Loss of Permeability

- Compaction
- Sedimentation
- Organic Degradation

Other Maintenance Problems

Typical GI Maintenance Tasks

- Mowing
- Sediment removal
 - (excavation, vacuuming, raking sweeping, washing)
- Pruning
- Weeding
- Planting
- Fertilizing
- Re-grading
- Soil restoration
- Structural Repairs

Onondaga County, New York Save the Rain Program Green Infrastructure Maintenance Training

Prepared for Onondaga County, New York

savetherain.us

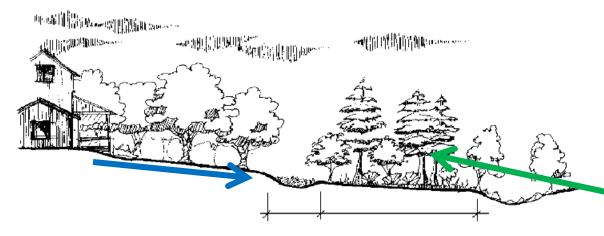
March 9, 2012

GI Practice Design and Care Details

No nutrients No organics No permeability

Soft Restoration

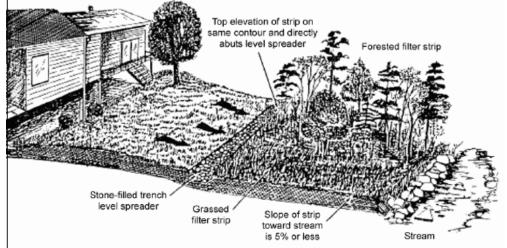
Restore Compacted Soils


How and when to restore Soil:

p 5-22

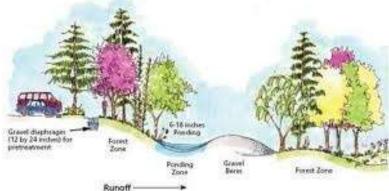
Table 5.3 Soil Restoration Requirements			
Type of Soil Disturbance	Soil Restoration Requirement		Comments/Examples
No soil disturbance	Restoration not permitted		Preservation of Natural Features
Minimal soil disturbance	Restoration not required		Clearing and grubbing
Areas where topsoil is stripped only - no change in grade	HSG A &B	HSG C&D	Protect area from any ongoing construction activities.
	apply 6 inches of topsoil	Aerate* and apply 6 inches of topsoil	
Areas of cut or fill	HSG A &B	HSG C & D	
	Aerate and apply 6 inches of topsoil	Apply full Soil Restoration **	
Heavy traffic areas on site (especially in a zone 5-25 feet around buildings but not within a 5 foot perimeter around foundation walls)	Apply full Soil Restoration (de- compaction and compost enhancement)		
Areas where Runoff Reduction and/or Infiltration practices are applied	Restoration not required, but may be applied to enhance the reduction specified for appropriate practices.		Keep construction equipment from crossing these areas. To protect newly installed practice from any ongoing construction activities construct a single phase operation fence area
Redevelopment projects	Soil Restoration is required on redevelopment projects in areas where existing impervious area will be converted to pervious area.		

Green Space/Buffers/Filter Strips



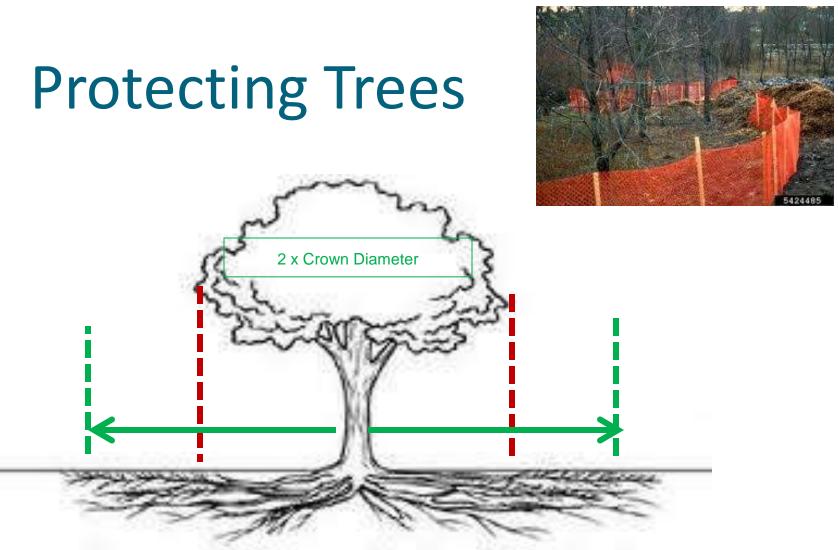
Green Space/Buffers/Filter Strips

Some Critical Elements


- Pavement Removal
- Flow dissipation
- Vegetation
- Contributing length
- Width
- Soils
- Slope
- Protection

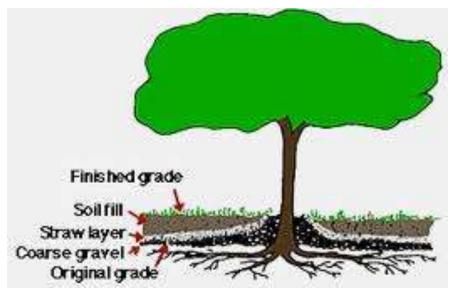
Maintenance of Green Space/Buffers/Filter Strips

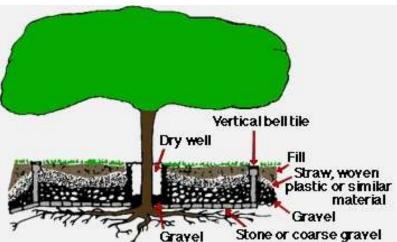
- Delineation
- Protection
- Enforcement
- Maintain Health and Diversity
- Debris removal



Tree Preservation/Planting Some Critical Elements

- Tree species
- Size/age
- Contributing DA
- Soil media (new plantings)

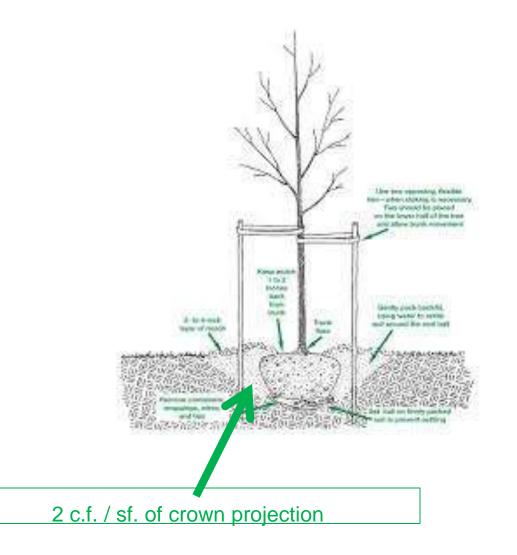




The roots of a tree extend far from the trunk and are found mostly in the upper 6 to 12 inches of soil.

Protection of Trees

Tree Planting

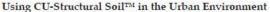

Nope

YUP

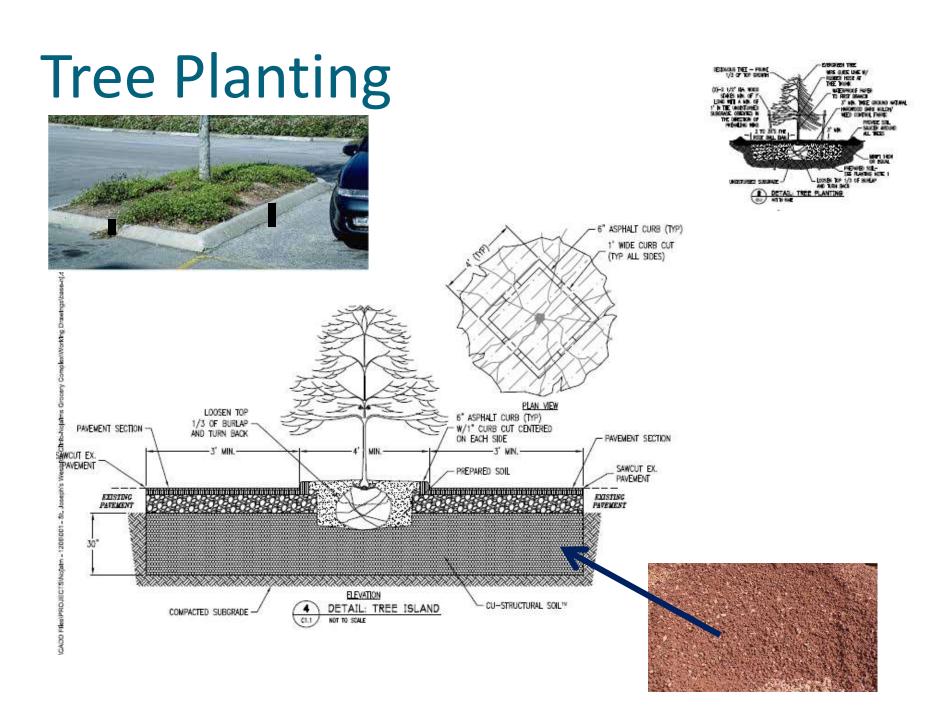
Tree Planting

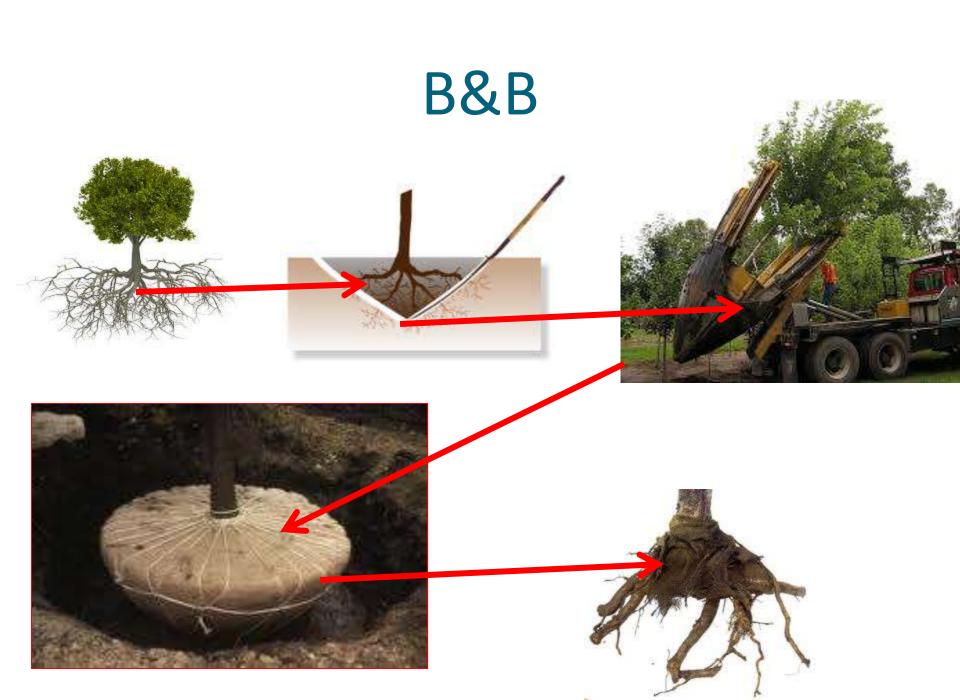
Planting Soil

- PH range 5.2 to 7.00
- Organic matter 1.5 to 4.0%
- Magnesium 35 lbs. per acre, minimum
- Phosphorus (P2O5) 75 lbs. per acre, minimum
- Potassium (K2O) 85 lbs. per acre, minimum
- Soluble salts 500 ppm
- Clay 10 to 25%
- Silt 30 to 55%
- Sand 35 to 60%



Planting Soil using Structural Soils





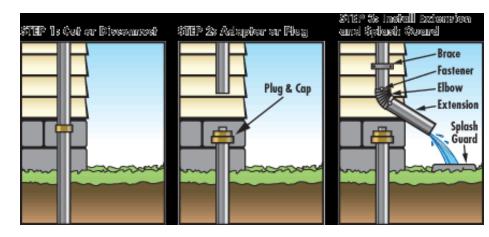
Urban Horticulture Institute Cornell University Department of Horticulture 134A Plant Science Building Hitaca, NY 14853 www.hort.cornell.edu/UHI

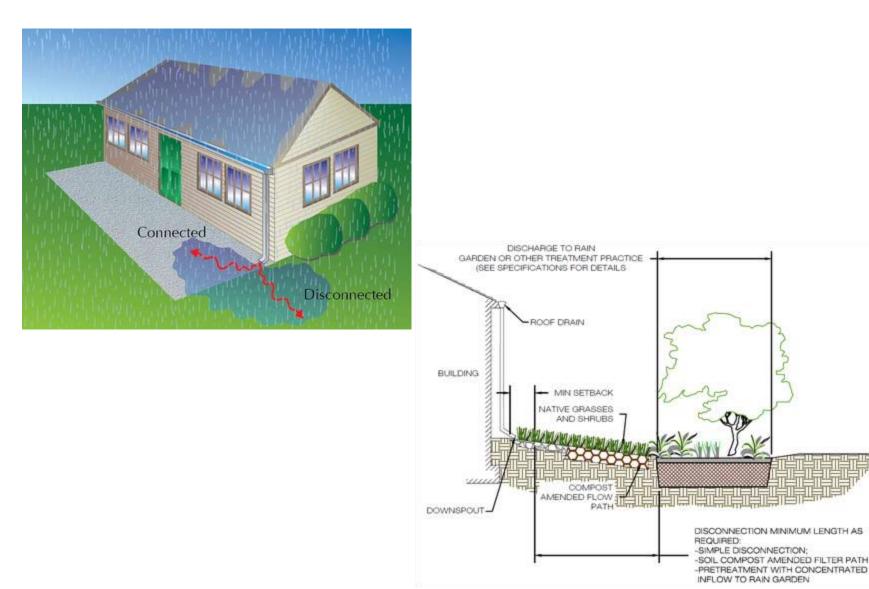
26% Voids

Bare Root and Container

Maintenance of Tree Planting/Preservation

- Mulching/fertilizing
- Watering
- Pruning
- Protection
- Remediation of natural and human damage




Disconnect Rooftop Areas

Rooftop Disconnection

Rooftop Disconnection Some Critical Elements

- Flow Dissipation
- Contributing surface area
- Flow distance
- Soils

Disconnect

Yes, or No?

Disconnect

Nope.

Disconnect

Yup.

Maintenance of Rooftop Disconnection

- Delineation
- Protection
- Enforcement
- Maintain Health
- Repair downspout erosion

Porous/Permeable Pavement

A porous pavement parking lot (Sourd Invisible Structures, no date)

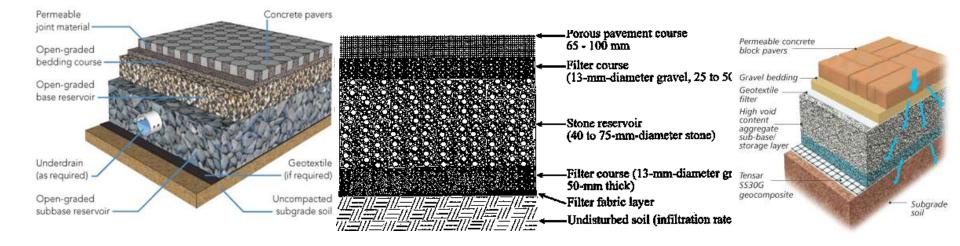
Porous / Permeable Pavement

Some Critical Elements

- Porosity
- Underlying soils
- Sub base
- Contributing DA
- Cross Section
- Climate
- Use

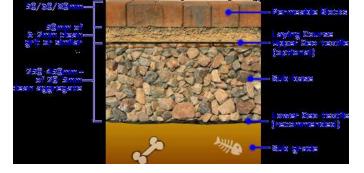
Porous/Permeable Pavement Materials

P. Pavement



P. Pavement

Cross Sections


POROUS ASPHALT COURSE 1/2-10-3/4-IN. AGGREGATE ASPHALTIC MIX (1.27-1.91 CM)

FILTER COURSE 1/2-IN, CRUSHED STONE (1.27 CM) 2 IN, THICK (5.00 CM)

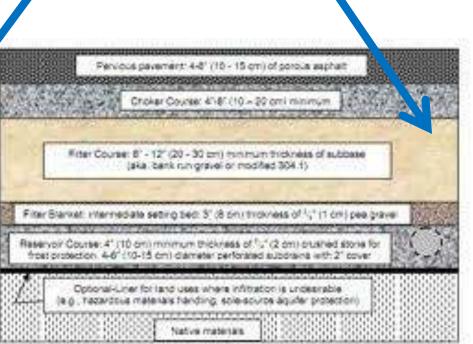
RESERVOIR COURSE (2,54-5,88 CM) 1- TO 2-IN CRUSHED STONE VOIDS VOLUME IS DESIGNED FOR RUNOPP DETENTION

THICKNESS IS BASED ON STORAGE REQUIRED AND PROST PENETRATION

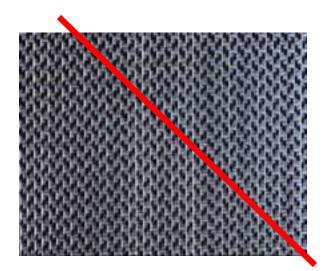
EXISTING SOL MINIMAL COMPACTION TO RETAIN PORDSIFY AND PERMEABILITY

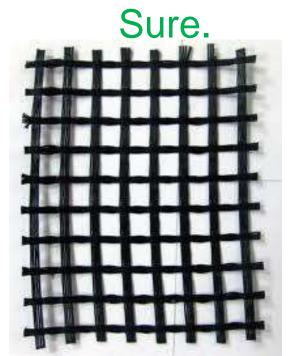
Figure 2. Walden Lot Cross-Section POROUS PAVEMENT TYPE A STONE 2.5 IN. TYPE & STONE 1.5 IN. GRAVEL FILL GRAVEL FILL

WATER TABLE

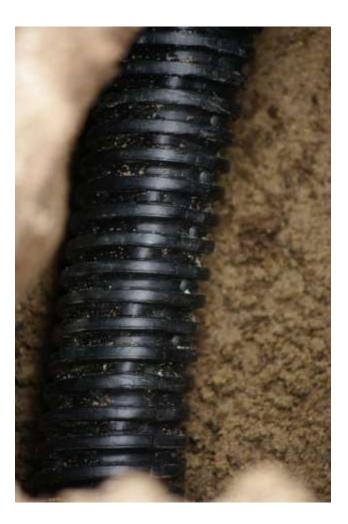

SUBGRADE

NYDOT No. 3A or ASTM No. 2 Stone




Maybe a Filter, too

P. Pavement



?

P. Pavement

No, or Yes, and Where?

Not much Treatment gonna happen here:

Articulated/Precast Porous Pavers

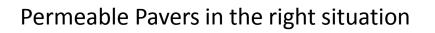
NYDOT

- Top Course Porous Asphalt
 - 475.5003
 - 475.5013
 - 475.5103

• Binder Course Porous Asphalt

- 475.7009
- 475.7019

Beach Road, Lake George



Cost Comparisons

Pavement	Cost per sq.ft. material (surface material only)
Standard Asphalt	\$2.40 to \$4.25
Porous Asphalt	\$2.75 to \$5.00 (\$9.50 for excavation, subgrade materials and labor)
Porous Concrete (8-in)	\$5.50 to \$9.00
Grass / gravel pavers	\$5.75 to \$7.25
Permeable Pavers	\$5.00 to \$12.00

- Costs for conventional paving do not incorporate SW mgmt costs (i.e reinforced concrete pipes, catch basins, outfalls)
 - \$9.50 and \$11.50 per square foot.

Permeable Pavers in the wrong situation

Movement of Sediment

Maintenance of Porous and Permeable Pavement

- Check voids
- Removal of Debris and sediment
- Vacuuming
- Power washing
- Sweeping
- Ability to De-water
- Repairs of deterioration, spalling, displacement
- Maintaining adjacent areas of run-on
- Restore paver block aggregate

Winter Maintenance of Porous and Permeable Pavement

- Raise plow blade for pavers
- No road abrasives
- Reduced salt use
- No snow piles on PP

Green Roofs

Green Roofs Some Critical Elements

- Roof design
- Climate
- Irrigation
- Access
- Soil media
- Cross section
- Drainage
- Vegetation

Green Roof

Extensive

Intensive

Green Roof

Cross Section

Extensive Greenroot plantings (sedum blanket / indigenous mix)

Lightweight growing media

Geo textile (filter fabric)

Optional contouring/insulation layer

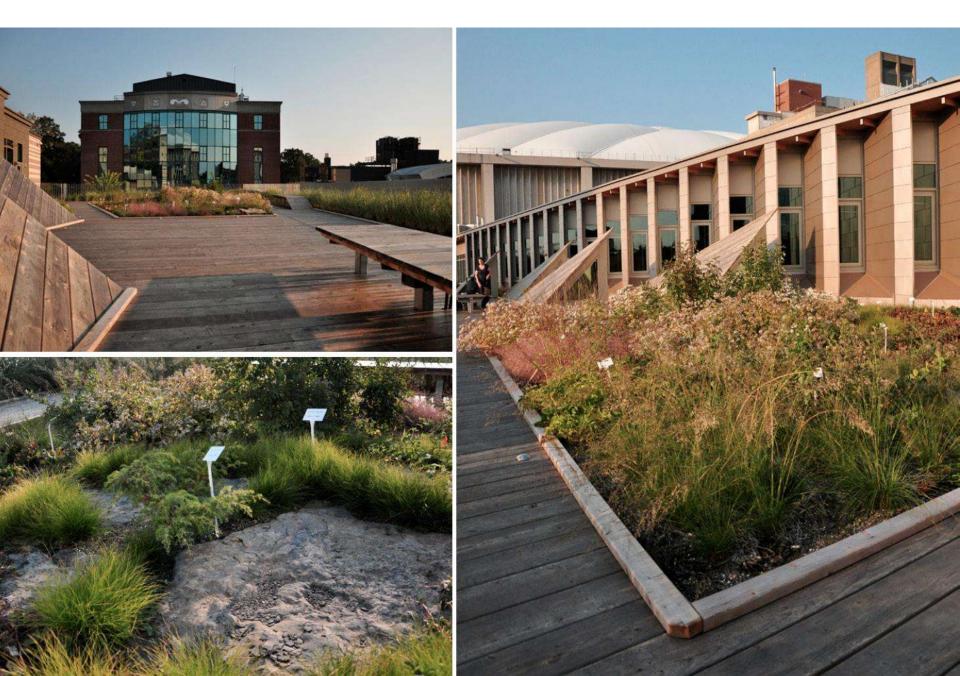
Selected drainage membrane Liquid applied decothane dual-layered.

reinforced waterproofing

Structure

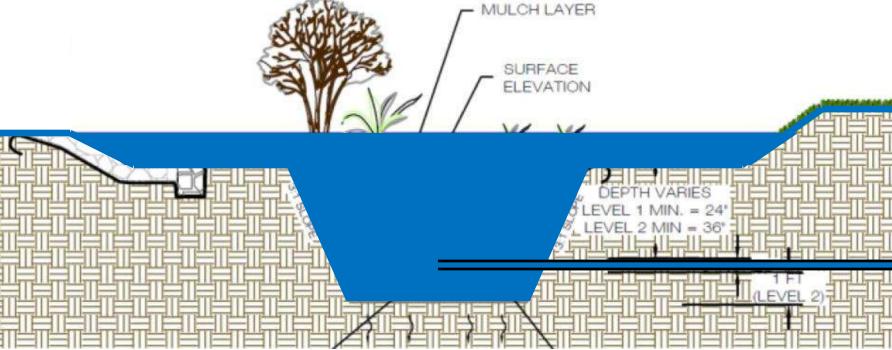
Green Roof Plant materials

Green Roof


Modular Systems

Green Roots

Maintenance of Green Roofs


- Irrigation
- Weeding
- Fertilizing
- Drainage maintenance
- Plant replacement
- Membrane integrity

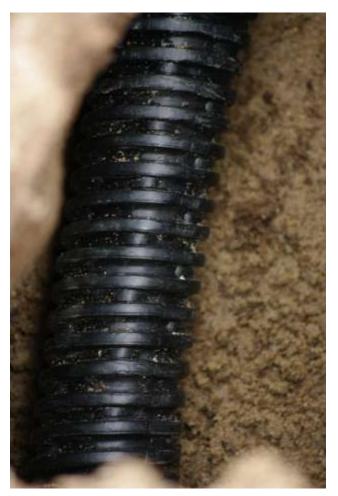
Bioretention, Rain Gardens, Tree Trenches, Planters

Runoff flows into a bioretention facility and temporarily ponds. Water then slowly filters through the filter bed and either is collected by the underdrain and sent to the storm sewer system or infiltrates into the surrounding area.

Bioretention Areas

Planters

Tree Trench



Rain Gardens/Bioretention/Planters/Tree Trenches Some Critical Elements

- Inflow dissipation
- Flow bypass
- Soil media
- Surface area
- Ponding depth
- Geometry
- Vegetation
- Native soils
- Location
- Pre-treatment
- Drainage Area

No, or Yes, and Where?

Bio-Rain

Bio/Rain

Soil Mixture

New york state criteria: bigretention media

- Parameter Value
 - PH range 5.2 to 7.00
 - Organic matter 1.5 to 4.0%
 - Magnesium 35 lbs. per acre, minimum
 - Phosphorus (P2O5) 75 lbs. per acre, minimum
 - Potassium (K2O) 85 lbs. per acte, minimum
 - Soluble salts 500 ppm
 - Clay 10 to 25%
- Silt 30 to 55
- Sand 35 to 60%

• Appendix H.

New York State Stor cawater Managers ent Design Marcaal

<u>New</u> Recommendations

for Media Recipe*

- Recipe for sand, soil and compost mix
 - 85% to 88% sand;
 - 8% to 12% soil fines; and
 - 3% to 5% organic matter.
 - More organic where trees are planted
 - Soil P Index less than 30

* CWP et al....Differs from the NYSDEC Stormwater Design Manual

Pretreatment

Grass Filter Strip

Grass Channel

Forebay

Mulch

Stone Flow Spreader

Stone/Rip Rap Apron

'Bio-Typologies'

Typology: "The taxonomic classification of characteristics common to buildings or spaces ..."

Other Types of Surface Cover

No

NO

The LA Touch

Aesthetics of Bioretention

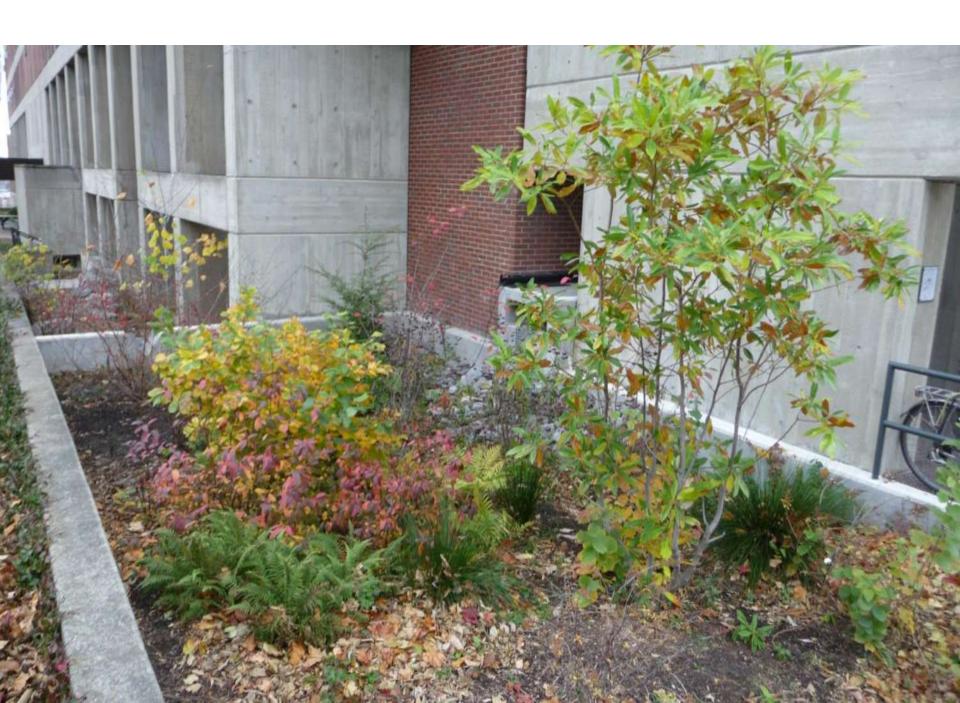
than the set of the se

ante.

Aesthetics of Bioretention

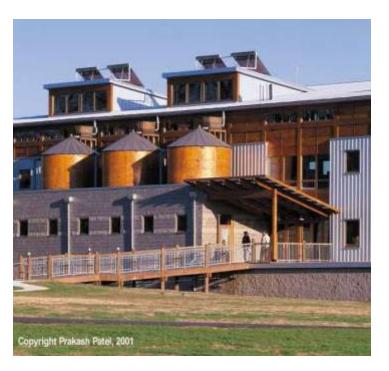
Aesthetics of Bioretention

Succession and Break- in Periods



Aesthetics

Infancy to Maturity


Maintenance of Rain Garden/Biofilter/Tree Trench/Planters

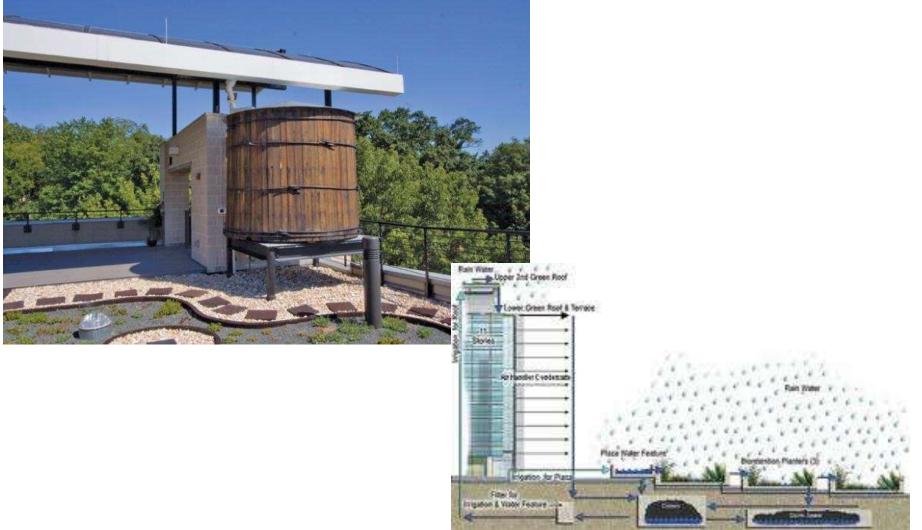
- Occasional replacement of plants, mulching, weeding and thinning
- > Watering essential the first year
- > Keep plants pruned if they start to get "leggy" and floppy
- Cut off old flower heads after a plant is done blooming
- > Keep free of bare areas except where stepping stones are located
- Inspect for sediment accumulations
- Replace top few inches of soil when water ponds for more than 48 hours
- > Check for damage/failure of any wall, dam or berm and repair
- Correct any settlement or low spots
- Inspect and clean
- Debris and trash removal on a weekly or monthly basis
- Pruning and replacing dead or dying vegetation, plant thinning, and erosion repair

Rain barrels/Cisterns

Rain barrels/Cisterns Some Critical Elements

- Volume
- Climate
- Use
- Overflow

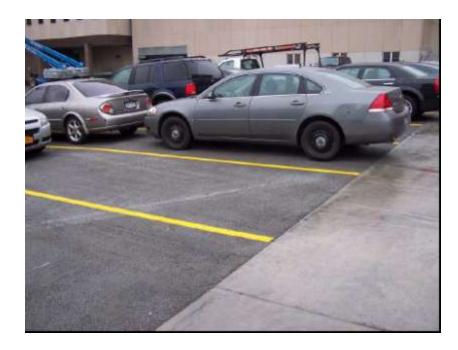
USE IT !

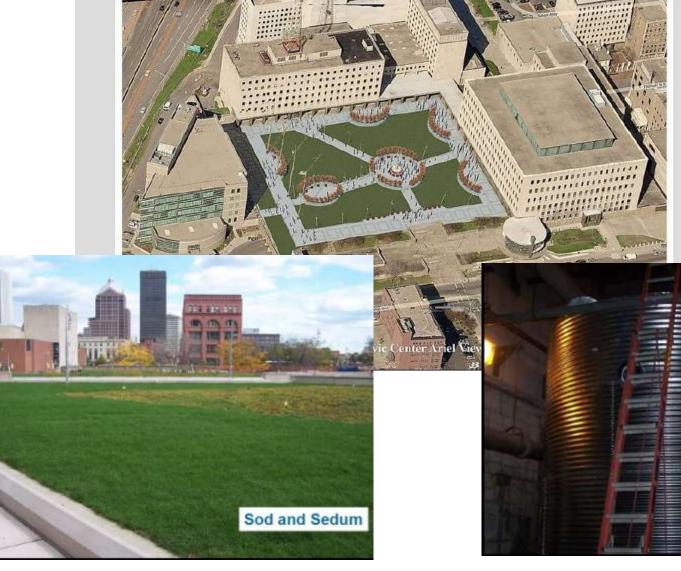


Rain Barrel/Planter

Cisterns and Green Roofs

Crime Lab in Monroe County CISTERN, RAIN GARDEN, POROUS PAVEMENT





1,500 Gallon Cistern

Collects Roof Water for Toilets and Mop Sinks

Civic Center Parking Garage GREEN ROOF, CISTERN

2 x 10,000

Gallon Cisterns

War Memorial Cistern Reuse System

Reusing rainwater appears to allow the ice making to occur one to two degrees warmer than using potable water resulting in energy savings

THE POST-STANDARD NDAY, JANUARY 6. 2013

syracuse.com

A 10-FOOT-WIDE GUTTER ringing the bottom of the Carrier Dome roof captures runoff and sends it into 36 drains that carry the water

to the city's stormwater system. The water then goes to the county wastewater treatment plant and on to Onondaga Lake. Syracuse University plans to divert nearly 15 percent of the roof runoff and use it to flush Dome toilets and urinals.

the fabric roof of the Carrier Dome, the 49,262-seat arena where SU's basketball, football

By Rick Moriarty

The sea of orange inside

Syracuse University's Carrier

flow like never before.

Dome on game days may soon

The university last month

received a \$1.35 million state

grant to install a system to col-

lect the rainwater that runs off

Staff writter

and other teams play. Approximately \$80,000 of the 6.6 million gallons of water that pours off the Donse's 7-acre roof. each year will be captured by the system and stored in tanks loang from the bottom of the arena's upper bleachers. During events at the Dome, the water will be used to

SEE NOW thish the toilets. DOME'S and urinals in #AINWATER the building's 16 DIVERSION public restrooms. PROJECT Building codes COMPARES require the water WITH to be dyed to OTHERS IN avoid confiniou CNY, A-B

with drinking water, even though the water will only be used in toilets and arinals. So university officials are considering coloring the water orange, the school's official color since 1890.

"We've been joking, wouldn't it be next if we could color it orange?" said Eric Beattie, the university's director of campus planning, design and construction. "Three's probably some mom for discussion."

Blue, which SU uses as an unofficial accent color, is also a possibility, he said.

The anivenity wants the public to notice the water harvesting system, and orange-colored water in the Dome's todets and trough-style utinds would be hard to miss. Beattir said the project is introded as a demonstration of how such systems can conserve municipal water

Lauten Long, I The Post-Manderdi. 2009

STSTER, PAGE 4-8

FAST FACTS

Each of the four 5,000-gallon tanks that will hold rainwater captured from the Carrier Dome's roof will be about 8 feet in diameter and 10 feet long and weigh 42,000 pounds.

The tanks will **Bold ensuch** water to flush the Dome's toilets and urinals during two major sporting events before they'll need more

Enough rainwater and anowmelt runs off the Dome's 7-acre roof each year to fill 10 Olympic-size swimming pools.

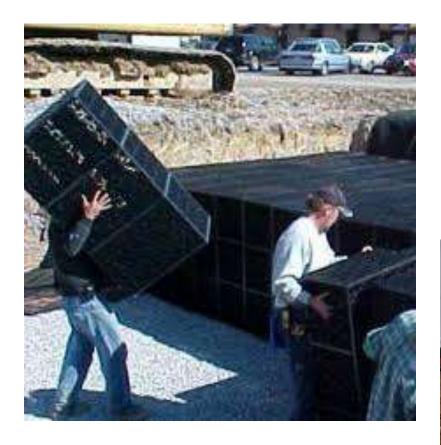
The gutter that nings the birthism of the Dome's roof is wide enough to hold a car."

when full.

Maintenance of Rain Barrels

- Maintenance requirements vary depending on the end use
- Winterization maintenance may be necessary
- Routine inspections to ensure the system is available for rain events
- Inspect roof catchments for particulate matter or other contaminants
- Inspect the gutters and downspouts for leaks or obstructions
- Inspect diverts, cleanout plugs, screens, covers, and overflow pipes
- Inspect inflow and outflow pipes
- Inspect connectors to adjacent storage containers or a water pump

Infiltration Practices

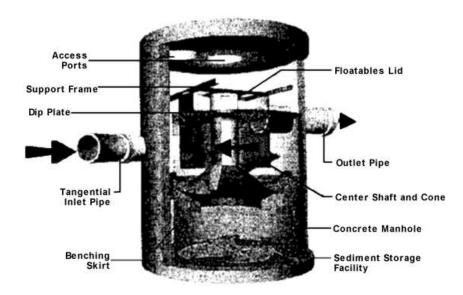


INFILTRATION Some Critical Elements

- Soils
- Groundwater
- Pre-treatment
- Surface Area
- By pass

Underground Infiltration

Infiltration Pre-treatment


Forebay

Infiltration

Pre-treatment

SETTLING CHAMBERS AND MECHANICAL SEPARATORS

No Infiltration Practices Here (At least not without "enhanced" pretreatment)

p 4-6 and 4-18 Design Manual

How Not to Build an Infiltration Practice

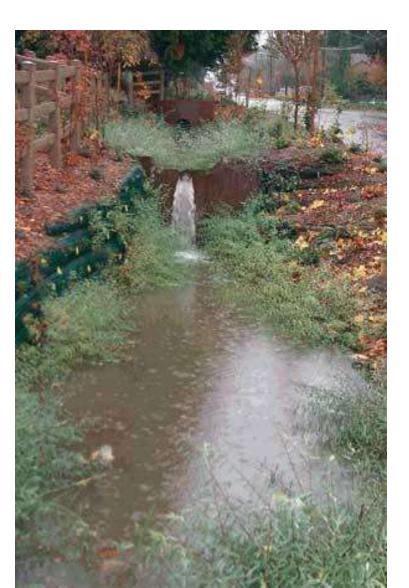
When Not to Build an Infiltration Practice

Maintenance of Infiltration

Practices

- Inspect and clean pre-treatment
- Monitor water levels
- Remove debris from exposed infiltration surfaces
- Maintain flow pathways

Monitoring Ports for all Infiltration and Filtering Practices



Swales

Swales

getated Swales

Vegetated Swale

Swales Some Critical Elements

- Flow volume and rate
- Soils
- Vegetation
- Geometry
- Slope
- Length
- Design

Swales - Maintenance

Maintenance Requirements

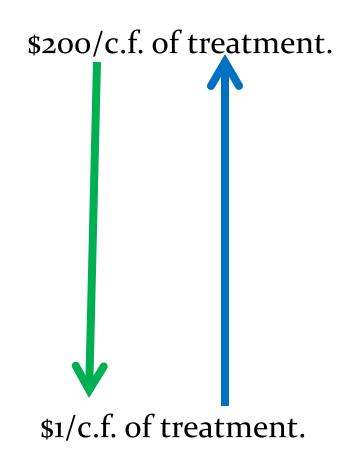
- Fertilize and lime as needed to maintain dense vegetation.
- Mow as required during the growing season to maintain grass heights at 4 inches to 6 inches.
- Remove any sediment or debris buildup by hand if possible in the bottom of the channel when the depth reaches 2 inches.
- Inspect for pools of standing water. Regrade to restore design grade and revegetate.
- Repair rills in channel bottom with compacted topsoil, anchored with mesh or filter fabric. Seed and mulch.

Putting it all together

Infiltrating/Filtering Tree Trench w Permeable Pavement

agailit, Kryines Wat

Buying In To It!



GI is essential and Important!

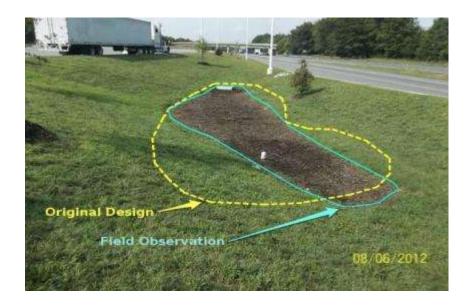
- Green Roof
- Perm./porous pave
- Rain Garden
- Planters
- Rain Barrel/Cistern
- Infiltration
- Swales
- Bioretention
- Trees
- Filter strip
- Disconnection

Typical GI unit costs:

- Rain garden \$10/s.f.
- Bioretention \$15/s.f.
- Underground infiltration \$25/s.f.
- Green Roof \$8/s.f.
- Porous Pavement \$12/s.f.
- Tree planting \$400 ea
- Tree trench/planter \$25/s.f.
- Cistern \$10/gal
- Drywell \$10/gal
- Green space \$5/s.f.

Making GI Last

Legal Agreements


- Define responsibility
- Municipal Back-up
- Break in period
- Security Posting
- Annual reporting
- Enforcement/Monitoring
- Assessment District

As-Built Surveys

Confirm:

- •Area
- •Volume
- Hydraulics
- Plant materials

In Situ Confirmation of Permeability

Filter media and Underlying Soil

Qualified Maintainers

We All Have a Part

Contact Info:

John Dunkle PE, CPESC, CMS₄S jdunkle@dunnandsgromo.com

315 449 4940