

Protecting Our Drinking Water through Stream and Sewer Restoration

Southeast New York Stormwater Conference October 14, 2015

NYC Water Supply

NYC DEP Bureau of Water Supply (BWS)

- Responsible for
 management, operation, and
 protection of New York City's
 water supply system
- Mission: to provide clean drinking water and protect the drinking water supply

Project Introduction and Background

- Grahamsville
 - Chestnut Creek
- Tannersville
 - Allen Brook
 - Gooseberry Creek
 - Saw Mill Creek
- Pine Hill
 - Birch Creek

Horseshoe Creek

Project Elements

- Evaluation of Potential Stream Restoration
 Techniques
- Stream Restoration and Erosion Control designs
- Additional hydrologic/hydraulic assessments at four sites (PH-2, PH-6, PH-4, and PH-5)

Stream restoration through Natural Channel Design

- Natural channel design attempts to restore a disturbed stream to imitate a natural stable channel.
 - Goal: final design causes neither erosion, excessive deposition of sediment nor flooding of nearby homes, businesses or roads
- What is a stable stream channel and how does it become unstable?
- Why did we use natural channel design for this project?

Fairfax County Watershed Management Plans - Stream Restoration

Stream Restoration Techniques: 101

- Types of Stream Restoration
 - Channel modification
 - Double drop rock cross vanes
 - Cross vanes
 - Bank stabilization
 - ≻ Riffle

What does Natural Channel Design look like?

Pre-restoration

Post-restoration

What does Natural Channel Design look like?

Newly Installed Cross Vane

Stream side Riparian Plantings

Rock Cross Vane Details

Holliday Brook Emergency Flood Response

- Emergency response prompted by June 2007 flash flood around Pepacton Reservoir
- Constructed in-stream grade control structures:
 - rock-cross vanes
 - double rock-cross vanes three straight
 - rock vane

How was Natural Channel Design Incorporated?

Proposed measures Structure spans 1/2 to 2/3 of stream width. lope and vegetate banks Bankfull bench include: retrofitting existing (C) sewer protection Bankfull sta structures 20-30 FLOW implementing new Channe subpavement stream structures (cross Notes: Rocks in vane are not spaced. vanes and straight Can use to divert flow to center of channel

Typical Rock Vane: A) Plan B) Cross Section C) Profile

armoring banks with riparian plantings

vanes)

 \succ

 \geq

Evaluation of Crossings

- Evaluation based on
 - ➢ GIS information
 - Record drawings
 - Field visits
 - CCTV surveys of sewers (sewer and drain camera inspection)
 - Topographic/Stream crossing surveys

CIPP Lining to Minimize Disturbance

CIPP Lining

Examples of DEP Watershed Streams in Good Condition

Sewer stream crossing at G-1

Stream restoration and point repair for sewer

Sewer stream crossing at G-3

Sewer stream crossing at G-2

Stream restoration Design for G-3

- Double Drop Rock Vane + Cross Vane
- Riffle Grade Control

Detailed Pine Hill H&H Assessment

N/	Pine Hi	il l Drai nage	Areas
I and the second of the	Site		Drainage Area (square miles)
I CALEN DE AL	PH 1 PH 2 MH104A-MH103	489	0.8
in the second second	PH-3 MH101-MH100	1155	1.8
TATA TATA	PH-4 MH40-MH39 PH-5	2941	4.6
	MH143-MH19	4957	7.7
	PH-6 MH30-MH29A	1595	2.5
PH-1 PH-4 S R A R D A K PH-2 PH-3 PH-6 A Reflic			
	Quadra	ap: USGS 7.5 Minute ngle Topographic Map 5 0.5 1 Mi	

Detailed Pine Hill H&H Assessment

Figure 1: Esopus Watershed boundary with scoped flooding sources and labeled sub-watersheds.

Extracted from FEMA Watershed Hydraulic Study, New York June 2013

Detailed Pine Hill H&H Assessment

- Four Locations within Ulster County:
- PH-2 and PH-6 on Horseshoe Creek (aka Alton Creek)
- PH-4 and PH-5 are located on Birch Creek

- Cross section development/methodology
- Comparison to FEMA cross sections
- Modification to account for proposed improvements

Manning's n Value Adjustment

• Manning's n Composite for Channel:

$n = (n_b + n_1 + n_2 + n_3 + n_4)m$

n_b =a base value of n for a straight, uniform, smooth channel in natural materials

 n_1 =a correction factor for the effect of surface irregularities

 n_2 = a value for variations in shape and size of the channel cross section

 n_3 =a value for obstructions

n₄ =a value for vegetation and flow conditions m=a correction factor for meandering of the channel

• Manning's n Composite for Floodplain:

$n=(n_b + n_1 + n_2 + n_3 + n_4)m$

 n_b =a base value of n for the flood plain's natural bare soil surface

 n_1 =a correction factor for the effect of surface irregularities on the flood plain

 n_2 =a value for variations in shape and size of the flood-plain cross section, assumed to equal 0.0

 n_3 =a value for obstructions on the flood plain

 n_4 =a value for vegetation on the flood plain

m=a correction factor for sinuosity of the flood plain, equal to 1.0

Manning's n Value Adjustment

Details of HEC-Ras Model Development

- Steady State Analysis Only
- Evaluation under two scenarios: Existing and Proposed
- Model outputs compared the impacts of the sewer improvement work in terms of four main parameters:
 - Water surface elevation
 - Floodplain limits
 - > Velocity
 - Shear stress

A Closer Look at Hydraulic Structures in Pine Hill

- Detailed Bridge Assessment for PH-2
 - Velocity and shear increases during 100-year storm
 - Velocity under bridge is already elevated, and is likely to remain elevated during proposed condition
- Detailed Culvert Assessment for PH-4
 - Shear stress reduced or experiences a negligible increase
 - Velocity generally remains the same

PH-2 Crossing: Bonnie View Avenue Bridge

PH-2, view looking upstream from Bonnie View Ave

PH-2, view looking downstream from headwall

Eroded conditions at Bonnie View Avenue Bridge

PH-2 Crossing: Bonnie View Avenue Bridge

PH-2: Replacement of sanitary sewer pipe and concrete encasement

1//// CONTRACTOR STAGING AREA, TYP DETAIL, DWG 233-GCD-00 PLAN 1640 1635 1635 PIPE MO CONCRETE 100 E 1.11 ENCASEMENT REPLACEMENT, TYP SHE DIETAIL, DWG 233-GCD-008 1630 1630 1625 1625 Raising concrete encasement 1620 1630 changes stream channel topography 1615 1610 1610

PH-2 Existing Pipe and Concrete Encasement

PH-4 Crossing: Academy Street Culvert

PH-4, view looking upstream from sewer crossing

PH-4, view looking downstream at sewer crossing

PH-6 Crossing

PH-6, view looking upstream from sewer crossing, steep eroded banks visible

PH-6, view looking downstream from sewer crossing

PH-5 Crossing

PH-5, view looking upstream at sewer crossing

PH-5, view looking downstream from sewer crossing

Comparison of WSEL for Bankfull Storm Events

				Water Surface Elevation		
Stream	Cross Section Location	Representation	Storm Event	Existing Conditions (ft)	Proposed Conditions (ft)	∆ Proposed - Existing
Alton Creek		Bonnie View	1.25-year	1614.09	1614.51	0.42
	3686.482	Avenue Bridge; PH-2 improvements occur at the downstream end of the bridge	2-year	1614.34	1614.76	0.42
	281.5337	PH-6 sewer crossing	1.25-year	1472.66	1473.16	0.5
			2-year	1472.84	1473.33	0.49
Birch Creek	Academy Street Culvert; PH-4 improvements occur at the upstream end	Academy Street	1.25-year	1505.77	1505.77	0.00
		2-year	1506.66	1506.66	0.00	
	14821.95	PH-5 sewer crossing	1.25-year	1431.24	1431.56	0.32
			2-year	1431.85	1432.12	0.27

Comparison of Water Surface Elevations for 10year, 25-year, and 50-year Storms

 In general, either negligible increases or decreases.
 In the case of increases, generally less than 1 foot lateral increase

Comparison of WSEL: 100-year Storm Floodplain Analysis

- PH-2
 - ➢ WSEL increase of about 0.11 ft at downstream end of bridge
 - Equates to approximately 1 foot lateral increase; this impact is considered negligible
 - PH-6
 - ➢ WSEL increase of about 0.40 ft at location of improvement
 - Equates to approximately 1 foot lateral increase; this impact is considered negligible

Shear Stress and Velocity Analysis

- PH-2 and PH-6
 - minor increases in velocity and shear during the 2year storm
- PH-4 and PH-5
 - Iocalized minor increases during all storm events
- Conclusion:
 - Majority increases negligible based on particle entrainment analysis

Particle Entrainment Analysis

Modified Shield's Curve

Additional Resources: Stability Thresholds for Stream Restoration Materials (Fischenich 2001)

Results of Particle Entrainment Analysis

Stream	Location	Summary of Results
Alton Creek	PH-2	 Shear: No notable change Velocity: No notable change
	PH-6	 Shear: No notable change Velocity: Velocities exceed permissible range (5 ft/s) under 2-year existing and proposed conditions
Birch Creek	PH-4	 Shear: No notable change Velocity: No notable change
	PH-5	 Shear: No notable change Velocity: No notable change

Conclusions and Current Project Status

- Minor floodplain impacts at PH-2, PH-6, and PH-5; considered negligible
- With the exception of PH-6, all water surface increases are confined to channel banks
- Based on results of particle entrainment, only PH-6 is likely to require additional bank stabilization
- The Bonnie View Bridge at the location of PH-2 is currently experiencing erosion and the predicted velocity increases may exacerbate erosion
- Additional stream design at PH-6 and PH-5 to commence shortly